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ABSTRACT

Several previous studies have established statistical relationships between the severity of convection and
environmental conditions determined from rawinsonde observations. Here, the authors seek 1) to determine
whether similar relationships are observed when severe weather reports are associated with gridded short-term
numerical forecasts, and 2) to develop and demonstrate a prototypal probabilistic model to forecast the likelihood
athunderstorm will be tornadic. Severe weather reports and lightning network data from 1 January 1999 through
30 June 1999 were used to classify the weather at a set of Rapid Update Cycle (RUC-2) grid points into four
weather categories. These were no thunderstorms, nonsupercellular thunderstorms, supercellular thunderstorms
without significant tornadoes, and thunderstorms with significant tornadoes (F2 or greater). RUC-2 forecast
convective available potential energy (CAPE), helicity, and 0—4-km mean wind shear from the same period were
associated with this gridded classification of the weather. In general similar relationships were found between
environmental parameters and storm categorization as others have previously documented. The Bayesian prob-
abilistic model used here forecasts the likelihood that a thunderstorm will produce a strong or violent tornado,
given a certain value of CAPE and helicity (or CAPE and wind shear). For two selected cases when significant
tornadoes occurred, this model reasonably located the high-threat areas many hours in advance of the severe
weather. An enhanced version of this prototypal tool may be of use to operational severe weather forecasters.
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1. Introduction

Forecasts of severe weather have improved substan-
tially over the past few decades. Forecasters are using
improved numerical weather prediction models and im-
proved real-time data from sources such as Doppler ra-
dars, wind profilers, geostationary satellites, and the
lightning detection network. As well, they now more
thoroughly understand the dynamics of thunderstorms.
Consequently, since 1973, the percentage of tornadoes
occurring in a region within a tornado watch has in-
creased from 30% to nearly 60% (McCarthy et al. 1998;
Grice et al. 1999). Nonetheless, predicting severe thun-
derstorms other than by extrapolating the motion of ex-
isting severe storms is still quite difficult, and the in-
terval where extrapolation is useful is quite short.
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Many expect this trend toward more accurate tornado
forecasts will continue as a result of improvements in
numerical weather prediction models and assimilation
schemes. Operational models continue to be upgraded
and computed with smaller grid spacings (e.g., Rogers
et al. 1996; Smirnova et al. 1997; Benjamin et al. 1998;
Yucel et al. 1998). Within a few years we may have
small enough grid spacingsto resolve convective storms
in our operational weather prediction model simulations.
Despite this, chaos theory (Lorenz 1963, 1969) strongly
suggests that it will always be difficult or impossible to
predict the precise timing and location of these storms
beyond a few hours (Islam et a. 1993), regardless of
model resolution. Further, the smaller the scale of the
phenomenon, then generally, the shorter the range of
predictability. Given that precise numerical forecasts of
severe weather are likely to remain problematic (Brooks
et a. 1992), a realistic alternative goal is to relate the
probability of mesoscale or microscale severe weather
events to environmental conditions at the larger, more
predictable scales.

Just what are the environmental parameters at larger
scales that are related to severe weather and tornado
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potential? Miller (1972) and others have suggested the
importance of buoyancy parameters; the most widely
used now is convective available potential energy
(CAPE; Moncrieff and Miller 1976). Chisholm and Ren-
ick (1972) and Fankhauser and Mohr (1977) discussed
sounding characteristics typical of single-cell, multicell,
and supercell thunderstorms, finding among other things
that strong vertical wind shear was typical of supercells.
Numerical simulations by Klemp and Wilhelmson
(1978), Schlesinger (1980), Rotunno and Klemp (1982,
1985), Weisman and Klemp (1982, 1984, 1986), and
Klemp (1987) examined the dependence of storm struc-
ture on wind shear and buoyancy through the use of a
numerical cloud model. Using judiciously chosen ther-
modynamic and wind profiles, they demonstrated an
ability to simulate storms that were qualitatively similar
to those observed and to understand better the dynamics
of storm-splitting and the deviate motion of supercells.
Further, these | atter findings suggest what environmental
conditions are suitable for the development of particular
types of severe storms (e.g., short-lived storms were
associated with low shear and supercell storms associ-
ated with high shear).

Storm-relative helicity (SRH), which is related to
streamwise vorticity, has also been suggested as an im-
portant predictor of supercells and/or tornadic activity
(Lilly 1986; Davies-Jones 1984; Davies-Jones et al.
1990). Pictorialy, helicity is proportional to the area
swept out on a hodograph relative to the storm motion
vector. Dynamically, helicity in the region of storm in-
flow indicates that vertical rotation will develop when
horizontal shear isingested into the storm and tilted into
the updraft. Davies-Jones et al. (1990), Davies (1993),
and Droegemeier et al. (1993) discussed the use of he-
licity as a forecast parameter for supercell thunder-
storms. Recently, a number of authors have pointed out
potential problems with using helicity, including a sen-
sitivity to the estimated storm motion vector (Droege-
meier et al. 1993; Weisman 1996; Weisman and Rotunno
2000) and the strong mesoscale variability that helicity
can exhibit (Markowski et al. 1998b).

Several studies have attempted to establish statistical
relationships between environmental conditions and se-
vere weather. Davies and Johns (1993) discussed the
relationship of wind shear and helicity to strong and
violent tornadoes. Johns et al. (1993) similarly discussed
the relationship between the severity of tornadoes and
combinations of wind and buoyancy parameters. Brooks
et al. (1994a) found useful information in column max-
imum specific humidity, helicity, and midtropospheric
wind speed. Rasmussen and Blanchard (1998, hereafter
RB98) developed statistical relationships between thun-
derstorm severity and environmental parameters. When
convection occurred (as determined from lightning net-
work data), the convection was classified as nonsuper-
cellular, supercellular without signficant tornadoes, or
supercellular producing significant tornadoes, depend-
ing on the severe weather report (since the classification
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was not performed with radar data, the authors ac-
knowledged that there may have been significant errors
in the assignment to these categories). RB98 determined
the associated environmental parameters using a rela-
tively nearby 0000 UTC sounding, presumably located
in the inflow sector of the event. Parameters such as
mean shear, helicity, CAPE, and combinations thereof
were examined. Individual parameters were generally
shown to discriminate less effectively between the three
thunderstorm classifications than combinations of pa-
rameters such as CAPE and 0-4-km mean shear or
CAPE and helicity.

RB98'’s study used observed sounding data. However,
if tornado likelihood is to be forecast many hours prior
to tornado occurrence, environmental conditions from
numerical model forecastswill be required instead (e.g.,
Reap and Foster 1979; Stensrud et al. 1997). To this
end, we have collected half a year's worth of Rapid
Update Cycle (RUC-2) analyses and 12-h forecasts and
severe weather observations. Our aims are 1) to deter-
mine whether some previously documented relation-
ships between severe weather and environmental pa-
rameters are similar when these parameters are diag-
nosed from model analyses or 12-h forecasts rather than
from rawinsonde data, and 2) to develop a probabilistic
forecast model for the conditional probability of sig-
nificant tornadoes (F2 or greater) using RUC-2 12-h
forecast parameters. This probabilistic model will be
based exclusively on combinations of CAPE and
0—4-km mean shear or CAPE and helicity. These pa-
rameters (and many others) are considered when the
National Weather Service's Storm Prediction Center
(SPC) generates their severe weather outlooks (Johns
and Doswell 1992; Doswell et al. 1993).

The probabilistic model we will describe here should
be considered a prototype, a simple, test version of an
automated prediction algorithm that uses widely ac-
cepted measures of basic environmental conditions as-
sociated with severe weather. We acknowledge that there
are many other potentially crucial factors relating to
severe storm devel opment, including the amount of con-
vective inhibition, specific triggering mechanisms such
as outflow boundaries or drylines (e.g., Markowski et
al. 1998a; Rasmussen et al. 1999), and mechanisms for
generating low-level mesocyclogenesis (Rotunno and
Klemp 1985; Brooks et a. 1994b; Gilmore and Wicker
1998). We will not consider such additional effects here
but acknowledge the wisdom of considering them in
later studies, as well as the wisdom of collecting and
analyzing many years worth of data and revising the
classification scheme.

The note is organized as follows. Section 2 describes
the data and methodology. The method for categorizing
storms as tornadic, supercellular, or nonsupercellular
will be described, aswell as our methods for calculating
shear and helicity parameters. Section 3 compares the
relationships between storm types and environmental
conditions to those found in RB98. Section 4 then de-
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Mask (grid points where severe weather

and RUC-2 data were collected)

Fic. 1. Area where RUC-2 forecasts and the categorization of se-
vere weather are associated in this study (shaded region).

scribes the probabilistic forecast model we devel oped.
Section 5 presents some prototypal tornado probability
forecasts using this model and discusses these forecasts.
Section 6 concludes.

2. Data and methodology

a. Classification of observed weather at model grid
points

In order to match severe weather events with gridded
forecast data, we developed an agorithm to classify the
observed weather at RUC-2 model grid points. Because
of the paucity of reported data in the west, the devel-
opmental data was based only on a ‘“masked” subset
of pointsin the central and eastern United States (shaded
pointsin Fig. 1). The severe reports analyzed here orig-
inated from the Sorm Data final log of quality con-
trolled severe reports from 1 January 1999 through 30
June 1999. The log provides the timing, location, and
intensity of tornadoes, hail (and its size), and nontor-
nadic damaging wind reports. Only reports from 2200
to 0200 UTC were used in this study; it was assumed
that this time window could be associated reasonably
with numerically forecast or analyzed conditions at 0000
UTC. Approximately half of the tornadoes in a 24-h
period occurred within this 4-h window. The National
Lightning Detection Network, operated by Geomet Data
Services, Inc., provided the cloud-to-ground (CG) light-
ning strike data.

The composited severe report and lightning databases
were used to classify the weather at each RUC-2 grid
point within the masked area into one of four mutually
exclusive and collectively exhaustive categories, rough-
ly following the classification methodology outlined in
RB98. Thereader isreferred to that articlefor arationale
of this classification. The categories were 1) no thun-
derstorm, 2) nonsupercellular thunderstorm, 3) super-
cellular thunderstorm without significant tornado, or 4)
supercellular with significant tornado. The grid point

0000 UTC 22 Jan 1999
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Fic. 2. Severe weather reports (using classification described in
text) for the 4-h period centered on 0000 UTC 22 Jan 1999.

was classified as supercellular with significant tornado,
or simply ““tornado’ if there was an observation of an
F2 or greater tornado in that (40 km)?2 grid box during
that interval. The grid point was classified as supercel-
lular without significant tornado, or *‘supercellular,” if
no F2 or greater tornado occurred within the grid box
between 2200 and 0200 UTC, but hail of 2.0 in. (5.3
cm) or greater occurred. The grid point was classified
as a nonsupercellular thunderstorm, or simply ‘“‘non-
supercellular,” if more than two CG lightning strikes
occurred in the grid box between 2200 and 0200 UTC
and/or an F1 or FO tornado, hail <5.3 cm, or damaging
winds were reported. No thunderstorm took placein the
grid box surrounding the grid point if no severe reports,
no tornado reports, and two or fewer CG lightning
strikes occurred (the choice of two is admittedly some-
what arbitrary). This scheme differs slightly from the
RB98 scheme; weinclude smaller hail, damaging winds,
and FO and F1 tornadoes in the nonsupercellular thun-
derstorm category to ensure our classification was col-
lectively exhaustive. Illustrations of the classification
process are provided in Figs. 2 and 3.

As do RB98, we acknowledge this classification is
far from perfect; for example, radar data should have
been used to determine which storms were or were not
supercells rather than inferring this from hail and tor-
nado reports. Also, we have used only half ayear’'s data
here, excluding much summertime convection, so the
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Gridded Weather Classification,
0000 UTC 22 Jan 1999
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Fic. 3. Gridded analysis of thunderstorm type at RUC-2 grid
points for the same 4-h period as in Fig. 2.

effects of small sample size should be also considered
when interpreting our results.

Severe weather forecasters may find a different, more
elaborate classification scheme more useful to their fore-
casting purposes. We chose to closely follow the RB98
classification here to permit us to compare results and
because with our limited data, a refinement of the clas-
sification was not appropriate. Should we undertake sub-
sequent work with larger datasets, we intend to revise
the classification to make it more elaborate and useful
to severe storm forecasters.

b. Defining CAPE, shear, and helicity from RUC-2
data

Environmental parameters were determined from the
RUC-2 data as follows. RUC-2 0000 UTC analyses and
12-h forecasts from 1200 UTC conditions were used to
define CAPE, wind shear, and helicity at model grid
points inside the mask. Define

CAPE—gJEL%Z)E(Z)

where LFC is the level of free convection, EL is the
equilibrium level, 6(2) is the virtual potential temper-
ature at height z of an air parcel ascending moist adi-
abatically from the LFC, 6(2) is the virtual potential
temperature of the environment, and g isthe acceleration
due to gravity. Prior to 6 May 1999, the air parcel was

dz, (@)
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FiG. 4. lllustration of the method used for selecting an appropriate
proxy grid point for aproximity sounding if it israining at the original
grid point. Shaded areas represent grid points where rain has accu-
mulated during the past hour. Arrow indicates the direction of the
surface wind. Boxed point denotes the center of search region. Solid
line encompasses al grid points in search region. Filled circle in-
dicates grid point selected as the nearest rain-free grid point upstream
of the original grid point.

calculated from the parcel with the maximum 40-hPa
average wet-bulb potential temperature in the lowest
180 hPa; after 6 May, this was extended to maximum
in the lowest 300 hPa. Mean wind shear (Sh) refers to
hodograph length between 0 and 4 km above ground
level (AGL). We shall hereafter refer to this as the
0—4-km mean shear, or simply shear. Note that unlike
the definition of this in RB98, we do not divide by the
vertical depth of the shear layer. Helicity is calculated
using 0-3 km AGL winds and following the Galilean-
invariant methodology for calculating the storm motion
vector described in Bunkers et al. (2000). Helicity
(SRH) is defined here as

Sk V(2
—JO k-(V — 0 X?dz, 2

SRH =
where k is the vertical unit vector, cisthe storm motion
vector, and V(2) is the horizontal velocity vector.

If model-generated convection is occurring at afore-
cast grid point at 0000 UTC, its forecast sounding may
be unrepresentative of the preconvective environmental
condition. In this case, the forecast sounding at that grid
point is considered to be " contaminated’’ by model con-
vection, and another sounding point may need to be
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chosen. To address this, we have developed our own
proximity sounding method, as illustrated in Fig. 4. If
there is rain occurring at a model grid point, a set of
adjacent grid points is examined to determine if any of
them are rain free. This set of adjacent grid points is
determined by first finding the grid point that is 160 km
upstream of the rainy grid point, with the upstream di-
rection defined using model-forecast surface winds. A
9 X 9 array of grid points centered on this upstream
grid point is considered, and the nearest rain-free grid
point to the original rainy grid point is located. If the
CAPE at this rain-free grid point is greater than the
CAPE at the rainy grid point, then the CAPE, shear,
and helicity values from the rain-free grid point replace
the values at the rainy point. If the rainy point's CAPE
value is higher or if all boxesin the 9 X 9 array were
rainy, this point retains its original CAPE, shear, and
helicity. If we had RUC-2 data available at very high
temporal resolution, then ideally we would simply use
the RUC-2 conditions at the grid point for the forecast
hour immediately preceding the onset of convection.
However, since we lacked this high temporal resolution
data, this approximate algorithm was chosen to address
some of the issues of rain-contaminated model forecast
soundings.

3. Relationships between weather and
environmental parameters

Here, we analyze the relationship between the clas-
sified weather and the environmental parameters using
statistics similar to those used in RB98. This permits
ready comparison to see if the relationships are robust
despite our use of model-analyzed and forecast data (as
opposed to RB98's use of raob’s), and given our slightly
different analysis methods. We will examine the rela-
tionships between the weather classification and CAPE,
helicity, 0—4-km mean shear, the energy—helicity index
(Hart and Korotky 1991; Davies 1993), and the so-called
vorticity generation parameter (VGP; RB98). The en-
ergy-helicity index (EHI) is defined as

CAPE - SRH
= e x 105 )
Previously, EHI > 2.0 was suggested as indicating a
larger probability of supercells (RB98). The VGP pa-
rameterizes the rate of conversion of horizontal to ver-
tical vorticity through tilting. It is defined as

VGP ShV CAPE 4
©4000m @
Consider first the scatterplots of weather as a function
of RUC-2 12-h forecast CAPE and shear (Figs. 5a—d)
and CAPE and helicity (Figs. 6a—d). There are drasti-
cally many more points with no thunderstorms or non-
supercellular thunderstorms than with tornadic or su-
percellular thunderstorms, emphasizing the rarity of
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these events. However, the ratio of the frequency of
tornadoes relative to nonsupercellular thunderstorms is
much larger at higher CAPE and shear values than it is
at lower CAPE and shear values. That is, at lower CAPE
and shear, ordinary thunderstorm counts overwhelm tor-
nado counts, but at higher CAPE and shear, the relative
proportions of tornadic, supercellular, and nonsupercel-
lular thunderstorms are much more similar.

These relationships can be better visualized with box
and whisker plots, asin RB98. For CAPE (Fig. 7), notice
the RUC-2 data distributions have higher CAPEs rel-
ative to RB98 values, perhaps because of RUC-2 model
bias or a difference in the method of calculating the
wet-bulb potential temperature of the parcel (section
2b). Also, recall that our definition of nonsupercellular
convection is slightly different from the definition used
in RB98; we include FO and F1 tornadoes and reports
of hail <5.3 cm; they do not. This may tend to bias our
nonsupercellular CAPE, shear, and helicity values to-
ward slightly higher values than in RB98. Despite this,
the ability to discriminate between the three thunder-
storm types from RUC-2 CAPE is quite similar to the
ability demonstrated with sounding data in RB98.

Box and whisker plots for 0—4-km mean shear are
shown in Fig. 8. The ability of shear to discriminate
between thunderstorm types is somewhat different for
the analysis and forecast data. For example, notice that
for supercells, the mean shear changes from 27.8 ms*
in the RUC-2 analysis to 20.2 m s * in the forecast.
Whether this is a result of the relatively small sample
size owing to using 6 months of data or due to RUC-2
model biases or smoothing effects is unclear. However,
asin RB98, significant tornadic thunderstorms generally
are associated with higher shears. Also there doesappear
to be a shear threshold for tornadoes more noticeable
than that found in RB98; here, 90% of the significant
tornadoes occurred when shear was ~25 m s—* or great-
er. No such threshold at a relatively high shear existed
for the nonsupercellular thunderstorms. This result is
generally consistent with previous modeling studies
(e.g., Weisman and Klemp 1986) and observational
studies (e.g., Davies and Johns 1993).

Helicity (Fig. 9) appears to discriminate rather well
between tornadic thunderstorms and the other two clas-
sifications, better than in RB98. There also appears to
be a lower limit to helicity below which significant tor-
nadoes are extremely unlikely (e.g., Davies-Jones et al.
1990; Stensrud et al. 1997). Note that our classification
methodology uses a different, presumably improved
method for calculating storm motion (Bunkers et al.
2000) than was used in RB98.

As in RB98, we examined combinations of parame-
ters, namely, the EHI (Fig. 10) and VGP (Fig. 11). As
with RB98, the EHI discriminated relatively well be-
tween the three storm severities. EHI values were gen-
eraly higher than in RB98 because the input CAPE
values were larger, but there is a similar ability to dis-
criminate among the three storm types. The VGP is
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Fic. 5. Scatterplots of weather types as a function of CAPE and 0-4-km 12-h forecast mean wind shear from the
RUC-2 model. Contours of fitted probability density functions are overplotted (10th, 30th, 50th, 70th, and 90th per-
centiles). (a) Tornadic thunderstorm, (b) supercellular thunderstorm, (c) nonsupercellular thunderstorm, and (d) no

thunderstorm.

dlightly less effective as a discriminator than the EHI,
but this is qualitatively consistent with the results in
RB98.

Overall, the relationships demonstrated in this section
suggest that RUC-2 forecast data do have enough ability
to discriminate between nonsupercellular, supercellular,
and tornadic storms to suggest the potential usefulness
of these data in a probabilistic model.

4. Model for conditional probabilities of significant
tornadoes

We now turn our attention to how RUC-2 forecast
CAPE and shear (or helicity) information can be used
to model the likelihood of significant tornado occur-

rence, given that a thunderstorm occurs. Such a model
could be used as a forecast tool to quickly determine
areas with an enhanced risk of tornadoes. Note that we
will demonstrate only a model for the conditional prob-
ability a thunderstorm being tornadic, but no model of
unconditional probabilities or the probability of thun-
derstorms. We believe the development of these models
would be useful, though in developing them it may be
especially important to consider other potentially im-
portant parameters such as convective inhibition and the
effects of low-level boundaries as triggering mecha-
nisms (Markowski et al. 1998a; Rasmussen et al. 2000).

How might conditional tornado probabilities be fore-
cast using the CAPE and shear information in Fig. 5?
Given a RUC-2 forecast of CAPE and shear, a crude
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Fic. 6. Asin Fig. 5 but for CAPE vs helicity.

estimate could be made of the conditional probability
of tornadoes; the number of dots around particular
CAPE and shear valuesin Fig. 5a could be counted and
divided by the total number of dots around that CAPE
and shear in Figs. 5a—c. However, notice that the dots
tend to be clustered, so some of the variation in the
density of dots is probably unrealistic. This is because
our dataset has a small sample size and because param-
eters values among the samples are correlated (i.e., a
cluster of dots may reflect a tornado outbreak with data
points with similar CAPE and shear values). Hence,
some way of ‘‘smoothing” the gradations of dotswould
be helpful.

The starting point for an improved model is Bayes
rule (Wilks 1995). In this model, let B be the compound
event that CAPE and shear Sh have certain forecast
values. For example, B might be the event that Sh =
20 m s * and CAPE = 3000 Jkg~*. Let T be the event
that a RUC-2 grid box is classified as tornadic; let Sbe

the event that it is classified as supercellular; and let R
be the event that it is classified as a nonsupercellular
thunderstorm. Then, Bayes' rule states

f
P(TIE) =~y . ©
where
(® = 3 fBITPT) + {(BISPO
+ f(B|RP(R). (6)

Here, P(T) = n./(n; + ng + ng), P(S = nd(n; + ng
+ ng), and P(R) = ng/(n; + ng + ng), where n;, ng,
and ny indicate the total number of grid boxes classified
as either tornadoes, supercellular, or nonsupercellular
thunderstorms. That is, n+, ng, and ny are the total num-
ber of dots in Figs. 5a—c, respectively. The probability
density functions f(B|T) {=f[(CAPE, Sh)|T]},
f(B|9S), and f(B|R) represent the probability density of
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Fic. 7. Box and whisker plots for CAPE for the three storm types.
Box top, middle, and bottom indicate the 75th, 50th, and 25th per-
centiles of the empirical distributions, and the top and bottom ends
of the whisker denote the 90th and 10th percentiles, respectively. (a)
RUC-2 analysis data, and (b) 12-h RUC-2 forecast data.

aparticular CAPE and shear value, given that atornadic,
supercellular, or nonsupercellular thunderstorm occurs,
respectively. Qualitatively, they are related to the local
density of dots on each of the diagrams relative to the
density in other areas of the diagram.

We thus required an estimate of the probability density
function for tornadoes as a function of CAPE and shear
(and estimates for supercellular and nonsupercellular
thunderstorms as well). We constrained the possible val-
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Fic. 8. Asin Fig. 7 but for 0—4-km mean wind shear.

ues of CAPE and shear to realistic maximum and min-
imum values and estimate densities within these param-
eter ranges. Specificaly, 0 = CAPE < 6000 J kg~ and
0 = Sh < 100 m s*. Probability density was required
to integrate to 1.0 over this domain. The range of pa
rameter values for f(B|S and f(B|R) were similarly
constrained. We assigned zero conditional probability of
tornadoes if CAPE = 0.

We tried to estimate f(B|T), f(B|9), and f(B|R) us-
ing parameteric probability density distributions such as
the bivariate gammadistribution or bivariate normal dis-
tributions fitted to power-transformed data (Wilks
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1995). However, these methods produced unsatisfactory
fits (not shown). Hence, we resorted to estimating
f(B|T), f(B|S), and f(B|R) using nonparametric den-
sity estimation techniques (Silverman 1986). The reader
is referred to this very readable text for details on the
application of this technique.

For our purposes, some unconventional extensionsto
standard nonparametric kernel techniques were required
to produce reasonable density estimates. For example,
we found that a transformation of coordinate systems
to make the data more normally distributed was nec-
essary before generating density estimates; application
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of the kernel technique when the data were strongly
nonnormal resulted in erroneously low density estimates
near zero CAPE. After density estimates were produced
in the transformed coordinate system, the density esti-
mates were transformed back to provide an estimate in
the original, untransformed coordinate system.

We also found that larger window widths than one
might expect were required to generate appropriately
smooth density estimates, especially for the tornadic and
supercellular categories. When conventional methods
for estimating optimal window widths were used, such
as cross validation, the resulting density estimates were
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unredlistically ““lumpy.” As mentioned previously, this
was because individual observations could not be as-
sumed to be independent, since severe weather reports
typically occurred in clusters with similar CAPE—shear—
helicity values. Hence, we subjectively selected what
we believed were optimal window widths.

Contours of the probability density estimates are
overlaid on the scatterplots in Figs. 5a—d and 6a—d.
These probability density estimates are then used in con-
junction with RUC-2 forecast parameters using (5) and
(6) to determine the conditional probability a thunder-
storm will be tornadic. An illustration of this model’s
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Fic. 12. Conditional probabilities of the occurrence of a tornado
(in %) given that a thunderstorm occurs as a function of RUC-2 12-h
forecast parameters (a) CAPE and 0—4-km mean shear, and (b) CAPE
and helicity. Areas without contours were not sufficiently popul ated
with samples to attempt a probability estimate or had negligibly small
probabilities.

estimate of conditional tornado probability as a general
function of CAPE and shear and CAPE and helicity are
shown in Figs. 12a,b. As expected, the probability of a
tornado occurring generally increases with increasing
CAPE and shear. Even with the relatively strong
smoothing used to generate the density estimates, the
probabilities have multiple maxima that are likely un-
realistic. We expect that if we collected alonger sample
of data, the incidence of tornadoes would not be con-
centrated specifically near one value of CAPE and he-
licity or shear, and these curves would become smoother
and may not exhibit such multiple maxima.

Note that this model is designed similarly to Model
Output Statistics (MOS; Carter et a. 1989); forecast
equations are developed by relating observational data
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to forecast model output. Hence, it has many of the same
strengths and drawbacks of MOS. Most notably, if the
model physics are stable, then this scheme can account
for model biases. However, if model physics are
changed, and new forecasts have substantially different
biases than the ol d forecasts used as devel opmental data,
then the accuracy and reliability of probability estimates
will be degraded. Also, as with MOS, this approach
cannot be expected to correct for random errors in po-
sition or magnitude of input fields. For example, if the
axis of maximum CAPE is misforecast by the RUC-2,
the axis of maximum tornado probability can be ex-
pected to be misforecast as well.

5. Results from probabilities model

We now provide some simple illustrations of condi-
tional tornado probability forecasts generated from this
model. We shall examinetornado forecasts valid at 0000
UTC on two days: 22 January 1999 and 4 May 1999.
These dates are days with significant tornado outbreaks
in Arkansas (Fig. 3) and Oklahoma (Fig. 13).

It isimportant to devel op the probabilistic model with
a different dataset than is used to evaluate it. To this
end, when producing forecasts for 22 January 1999, for
example, this day’s data points were excluded from the
dataset used to develop probability estimates, with sim-
ilar exclusion when producing 4 May 1999 forecasts.
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PgTornado | Thunderstorm Occurs) for
12 h torecast from 1200 UTC on 21 Jan 1999
using CAPE and 0-4 km mean shear

(a)

P$Tornodo | Thunderstorm Occurs) for
12 h forecast from 1200 UTC on 21 Jan 1999
using CAPE and storm-relative helicity

(b)

Fic. 14. Forecast conditional probabilities of the occurrence of a
tornado given that a thunderstorm happens, for the forecast valid at
0000 UTC 22 Jan 1999. Compare to observationsin Fig. 2. (a) Prob-
abilities using CAPE and shear, and (b) using CAPE and helicity.
Dotted areas indicate regions where probabilities should be regarded
with suspicion because parameter values were outside the range of
values used to develop the equations.

Because the model was developed using only 6 months
of severe weather data, excluding any one case day with
amajor tornado outbreak can cause a substantial change
in the probabilities, as will be demonstrated.

Tornado probability forecasts valid at 0000 UTC 22
January 1999 are shown in Figs. 14a,b. The model has
a maximum of probability in northern Louisiana and
overlapping the area of the tornado outbreak. These
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probabilities would have been much higher had the
cross-validation technique not been used and the 0000
UTC 22 January 1999 data not been included in the
developmental data (Fig. 15). Comparing this figure
against Fig. 12b, note that the probabilities at moderate
CAPE and shear are dramatically lower when this case
day is excluded. Hence, the longer the developmental
period, the more reliable the tornado probabilities
should be.

The forecasts for the Oklahoma City tornado outbreak
at 0000 UTC 4 May 1999 are shown in Figs. 16a,b. The
tornado probability maximum was forecast in south-
central Texas, but there was also a relative maxima
through Oklahoma and Kansas, overlapping the area
struck by tornadoes. There was some convection as-
sociated with very large CAPE values in south-central
Texas that day (Fig. 13).

Much of the region with high probabilities did not
have convection, however. Since the maps display con-
ditional probabilities given that a thunderstorm occurs,
this does not necessarily indicate a problem with the
model. It does highlight the need for additional guidance
on the likelihood of thunderstorms of any type occur-
ring. However, forecasting convective initiation isatre-
mendously complex problem, and a model for thun-
derstorm likelihood probably would require other in-
formation, such asthe strength of low-level convergence
and the amount of convective inhibition. We have some
evidence that RUC-2 forecast convective inhibition may
be useful asan additional predictor of thunderstormlike-
lihood. Using data points from Fig. 5, we examined the
distribution of convective inhibition for data points
where CAPE was greater that 2000 J kg=* (Fig. 17).
Distributions were plotted for both no thunderstorms
and a composite of the three thunderstorm categories.
Note that all other things being equal, the likelihood of
convection occurring at high CAPE is reduced when
there is a large amount of convective inhibition, as one
might expect.
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1 6
Probability (5%)

Fic. 16. Asin Fig. 14 but for the date 0000 UTC 4 May 1999.
Compare to gridded classification in Fig. 13.

6. Conclusions

This note described results from associating a clas-
sification of thunderstorm severity based on severe
weather reports and lightning observations with RUC-2
analyses and forecasts. The purpose was both to com-
pare and contrast these model-based results with the
raob-based results such as in RB98 and to develop a
probabilistic forecast model for conditional tornado
likelihood. This model specifies the conditional prob-
ability that a significant tornado will occur given that a
thunderstorm occurs and given that certain RUC-2
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FiGc. 17. Histogram of RUC-2 12-h forecast convective inhibition for subset of data points with
CAPE > 2000 J kg~*. Histograms are plotted for both a composite of the tornadic—supercellular—
nonsupercellular categories and for the no thunderstorm category.

CAPE and shear (or CAPE and helicity) values arefore-
cast.

RUC-2 analysis and forecast data provided a rather
similar ability to distinguish between storm typesaswas
observed by RB98 using raob data. This suggested such
model data should be useful in a probabilistic forecast
model of tornado likelihood.

Our probabilistic model was MOS-like in character
but forecast conditional probabilities of significant tor-
nadoes given a thunderstorm occurred. A few select
cases demonstrated that the model does areasonable job
of predicting areas of enhanced risk for tornadoes. Like
MOS, this model should perform best when the model
physics are unchanged, and like MOS, it cannot correct
for random model errors. Still, a probabilistic model
like this one may be of use as a supplemental guidance
tool for severe storms forecasters.

Many improvements to this prototype are envisioned
once more data are available. First, a more robust clas-
sification methodology could be used, one that is tai-
lored to the specific needs of severe weather forecasters.
Ideally, the classification scheme and probabilistic mod-
els would be tailored to generate products to help fore-
casters with their sequential decision process. an im-
proved model might thus forecast the likelihood of thun-
derstorms, the probability these thunderstormswill con-
tain severe weather, and the conditional probability of

various types of severe weather given that some severe
weather occurs.

Beyond improving the classification and using more
data, other changes may prove useful. For example, per-
haps regional model biases in CAPE and shear can be
corrected before a scheme such as thisis applied. Also,
it may be useful to develop forecasts for different lead
times such as 3 or 6 h, for synoptic times other than
0000 UTC, and to use a wider variety of information
in model development than just CAPE, shear, and he-
licity.

We hope to be able to do more extensive testing and
development in the future in collaboration with opera-
tional forecasters.
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